| Peer-Reviewed

Fixed-point Theorems in G-complete Fuzzy Metric Spaces

Received: 25 June 2015     Accepted: 13 July 2015     Published: 30 July 2015
Views:       Downloads:
Abstract

In the present paper we introduce generalized contraction mapping in fuzzy metric space and some fixed-point theorems for G-complete fuzzy metric space are proved. Our results generalize and extend many known results in metric spaces to a (non-Archimedean) fuzzy metric space in the in the sense of George and Veeramani [George A, Veeramani P, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 1994;64:395-9].

Published in Pure and Applied Mathematics Journal (Volume 4, Issue 4)
DOI 10.11648/j.pamj.20150404.14
Page(s) 159-163
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Fuzzy Metric Spaces, Generalized Contraction Mapping, G-Complete

References
[1] L. B. Ciric. Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) (N.S.),12(26):19-26, 1971.
[2] L. B. Ciric. Fixed points for generalized multi-valued contractions. Mat. Vesnik, 9(24):265-272,1972.
[3] L. B.Ciric. On fixed points of generalized contractions on probabilistic metric spaces. Publ. Inst.Math. (Beograd) (N.S.), 18(32):71-78, 1975.
[4] A. George and P. Veeramani. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3):395{399, 1994.
[5] M. Grabiec. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3):385{389, 1988.
[6] V. Gregori and A. Sapena. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2):245-252, 2002.
[7] I. Kramosil and J. Michalek. Fuzzy metrics and statistical metric spaces. Kybernetika (Prague), 11(5):336-344, 1975.
[8] D.Mihet. Fuzzy-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6):739-744, 2008.
[9] E. Pap, O. Hadzic, and R. Mesiar. A fixed point theorem in probabilistic metric spaces and an application. J. Math. Anal. Appl., 202(2):433-449, 1996.
[10] J. u. Rodriguez Lopez and S. Romaguera. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems, 147(2):273-283, 2004.
[11] S. Romaguera, A. Sapena, and P. Tirado. The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words. Topology Appl., 154(10):2196-2203, 2007.
[12] B. Schweizer and A. Sklar. Statistical metric spaces. Pacic J. Math., 10:313-334, 1960.
[13] R. M. Tardi. Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl., 165(2):517-523, 1992.
Cite This Article
  • APA Style

    Naser Abbasi, Hamid Mottaghi Golshan, Mahmood Shakori. (2015). Fixed-point Theorems in G-complete Fuzzy Metric Spaces. Pure and Applied Mathematics Journal, 4(4), 159-163. https://doi.org/10.11648/j.pamj.20150404.14

    Copy | Download

    ACS Style

    Naser Abbasi; Hamid Mottaghi Golshan; Mahmood Shakori. Fixed-point Theorems in G-complete Fuzzy Metric Spaces. Pure Appl. Math. J. 2015, 4(4), 159-163. doi: 10.11648/j.pamj.20150404.14

    Copy | Download

    AMA Style

    Naser Abbasi, Hamid Mottaghi Golshan, Mahmood Shakori. Fixed-point Theorems in G-complete Fuzzy Metric Spaces. Pure Appl Math J. 2015;4(4):159-163. doi: 10.11648/j.pamj.20150404.14

    Copy | Download

  • @article{10.11648/j.pamj.20150404.14,
      author = {Naser Abbasi and Hamid Mottaghi Golshan and Mahmood Shakori},
      title = {Fixed-point Theorems in G-complete Fuzzy Metric Spaces},
      journal = {Pure and Applied Mathematics Journal},
      volume = {4},
      number = {4},
      pages = {159-163},
      doi = {10.11648/j.pamj.20150404.14},
      url = {https://doi.org/10.11648/j.pamj.20150404.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20150404.14},
      abstract = {In the present paper we introduce generalized contraction mapping in fuzzy metric space and some fixed-point theorems for G-complete fuzzy metric space are proved. Our results generalize and extend many known results in metric spaces to a (non-Archimedean) fuzzy metric space in the in the sense of George and Veeramani [George A, Veeramani P, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 1994;64:395-9].},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Fixed-point Theorems in G-complete Fuzzy Metric Spaces
    AU  - Naser Abbasi
    AU  - Hamid Mottaghi Golshan
    AU  - Mahmood Shakori
    Y1  - 2015/07/30
    PY  - 2015
    N1  - https://doi.org/10.11648/j.pamj.20150404.14
    DO  - 10.11648/j.pamj.20150404.14
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 159
    EP  - 163
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20150404.14
    AB  - In the present paper we introduce generalized contraction mapping in fuzzy metric space and some fixed-point theorems for G-complete fuzzy metric space are proved. Our results generalize and extend many known results in metric spaces to a (non-Archimedean) fuzzy metric space in the in the sense of George and Veeramani [George A, Veeramani P, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 1994;64:395-9].
    VL  - 4
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, Lorestan University, Khoramabad, Iran

  • Department of Mathematics, Lorestan University, Khoramabad, Iran

  • Department of Mathematics, Lorestan University, Khoramabad, Iran

  • Sections