| Peer-Reviewed

Polymer Optic Technology

Published in Optics (Volume 4, Issue 1)
Received: 29 March 2015     Accepted: 9 April 2015     Published: 18 April 2015
Views:       Downloads:
Abstract

A polymer is a large molecule, or macromolecule, composed of many repeated subunits. Because of their broad range of properties, [1] both synthetic and natural polymers play an essential and ubiquitous role in everyday life.[2] Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass relative to small molecule compounds produces unique physical properties, including toughness, viscoelasticity, and a tendency to form glasses and semi crystalline structures rather than crystals. In this article we will investigate the role of polymers in optics and photonics and we will cite examples of polymers used in optics.

Published in Optics (Volume 4, Issue 1)
DOI 10.11648/j.optics.20150401.11
Page(s) 1-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Polymer Optic, Polymer Crystal, P-oled, Solar Cell, Optical, Fiber, Organic Polymer, Polymer Lasers, Optical Lenses

References
[1] Painter, Paul C.; Coleman, Michael M. (1997). Fundamentals of polymer science: an introductory text. Lancaster, Pa.: Technomic Pub. Co. p. 1. ISBN 1-56676-559-5.
[2] McCrum, N. G.; Buckley, C. P.; Bucknall, C. B. (1997). Principles of polymer engineering. Oxford; New York: Oxford University Press. p. 1. ISBN 0-19-856526-7.
[3] P. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953. ISBN 0-8014-0134-8.
[4] Pierre Gilles De Gennes, Scaling Concepts in Polymer Physics CORNELL UNIVERSITY PRESS Ithaca and London, 1979
[5] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics Oxford University Inc NY, 1986
[6] Michael Rubinstein and Ralph H. Colby, Polymer Physics Oxford University Press, 2003
[7] International Union of Crystallography (1992). "Report of the Executive Committee for 1991". Acta Cryst. A48 (6): 922. doi:10.1107/S0108767392008328.
[8] Steurer W. (2004). "Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals". Z. Kristallogr. 219 (7–2004): 391–446. Bibcode: 2004ZK....219..391S. doi:10.1524/zkri.219.7.391.35643.
[9] κρύσταλλος, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus Digital Library 2012
[10] Purdue University Categories of Solids http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch13/category.php
[11] C.Michael Hogan. 2011. Sulfur. Encyclopedia of Earth, eds. A. Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC
[12] Definition of polycrystalline graphite, IUPAC Compendium of Chemical Terminology 2nd Edition (1997)
[13] Hancock, BC; Shalaev, EY; Shamblin, SL (2002). "Polyamorphism: a pharmaceutical science perspective". The Journal of pharmacy and pharmacology 54 (8): 1151–2. doi:10.1211/002235702320266343. PMID 12195833.
[14] Mishima, O.; Calvert, L. D.; Whalley, E. (1985). "An apparently 1st-order transition between two amorphous phases of ice induced by pressure". Nature 314 (6006): 76. Bibcode:1985Natur.314...76M. doi:10.1038/314076a0.
[15] Rapoport, E. (1967). "Model for melting curve maxima at high pressure". J. Chem. Phys. 46 (2891): 1–5. Bibcode:1967JChPh..46.2891R. doi:10.1063/1.1841150.
[16] Franzese, G.; Malescio, G; Skibinsky, A; Buldyrev, SV et al. (2001). "Generic mechanism for generating a liquid–liquid phase transition". Nature 409 (6821): 692–5. arXiv:cond-mat/0102029. Bibcode: 2001Natur.409..692F. doi:10.1038/35055514. PMID 11217853.
[17] K. J. Rao (2002). Structural chemistry of glasses. Elsevier. p. 120. ISBN 0-08-043958-6.
[18] Ha, Alice; Cohen, Itai; Zhao, Xiaolin; Lee, Michelle et al. (1996). "Supercooled Liquids and Polyamorphism†". The Journal of Physical Chemistry 100: 1. doi:10.1021/jp9530820.
[19] Poole, P. H. (1997). "Polymorphic Phase Transitions in Liquids and Glasses". Science 275 (5298): 322. doi:10.1126/science.275.5298.322.
[20] Paolo M. Ossi (2006). Disordered materials: an introduction. Springer. p. 65. ISBN 3-540-29609-3.
[21] Charles E. Carraher, Raymond Benedict Seymour (2003). Seymour/Carraher's polymer chemistry. CRC Press. pp. 43–45. ISBN 0-8247-0806-7.
[22] Linda C. Sawyer, David T. Grubb, Gregory F. Meyers (2008). Polymer microscopy. Springer. p. 5. ISBN 0-387-72627-6.
[23] G. W. Ehrenstein, Richard P. Theriault (2001). Polymeric materials: structure, properties, applications. Hanser Verlag. pp. 67–78. ISBN 1-56990-310-7.
[24] Georg Menges, Edmund Haberstroh, Walter Michaeli, Ernst Schmachtenberg: Plastics Materials Science Hanser Verlag, 2002, ISBN 3-446-21257-4
[25] GW Becker, Ludwig Bottenbruch, Rudolf Binsack, D. Braun: Engineering Thermoplastics. Polyamides. (in German) Hanser Verlag, 1998 ISBN 3-446-16486-3
[26] Wilbrand Woebcken, Klaus Stöckhert, HBP Gupta: Plastics Encyclopedia. (in German) Hanser Verlag, 1998, ISBN 3-446-17969-0
[27] Wolfgang Weissbach: Materials science and materials testing. Vieweg + Teubner Verlag, 2007, ISBN 3-8348-0295-6
[28] Nilesh Patil, Luigi Balzano, Giuseppe Portale and Sanjay Rastogi (2010). "A study on the chain - particle interaction and aspect ratio of nanoparticles on structure development of a linear polymer". Macromolecules 43 (16): 6749. Bibcode:2010 MaMol..43.6749P. doi:10.1021/ma100636v.
[29] J. Lehmann (1966). "The observation of the crystallization of high polymer substances from the solution by nuclear magnetic resonance". Colloid & Polymer Science 212 (2): 167–168. doi:10.1007/BF01553085.
[30] Wang, Haopeng; Jong K. Keum; Anne Hiltner; Eric Baer; Benny Freeman; Artur Rozanski; Andrzej Galeski (6 February 2009). "Confined Crystallization of Polyethylene Oxide in Nanolayer Assemblies". Science 323 (5915): 757–760. Bibcode:2009Sci...323..757W. doi:10.1126/science.1164601.
[31] Gottfried W. Ehrenstein, Gabriela Riedel, Pia Trawiel: Practice of thermal analysis of plastics. Hanser Verlag, 2003, ISBN 3-446-22340-1
[32] Paul C. Painter, Michael M. Coleman (1997). "8". Fundamentals of Polymer Science An Introductory Text, Second Edition. CRC Press.
[33] Joachim Nentwig: Plastic films (in German) Hanser Verlag, 2006, ISBN 3-446-40390-6
[34] Martin Bonnet: Plastics in engineering applications: properties, processing and practical use of polymeric materials. (in German) Vieweg+Teubner Verlag, 2008 ISBN 3-8348-0349-9
[35] James F. Shackelford (2009). Introduction to Materials Science for Engineers. Prentice Hall. pp. 168–169. ISBN 0-13-601260-4.
[36] Andrew J. Peacock, Allison R. Calhoun (2006). Polymer chemistry: properties and applications. Hanser Verlag. pp. 286–287. ISBN 1-56990-397-2.
[37] Ágnes Tímár-Balázsy, Dinah Eastop (1998). Chemical principles of textile conservation. Butterworth-Heinemann. p. 11. ISBN 0-7506-2620-8.
[38] "Polycarbonate". city plastics. Retrieved 2013-12-18.
[39] Volker Serini "Polycarbonates" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000. doi:10.1002/14356007.a21_207
[40] Wima (capacitor manufacturer) on discontinuation of polycarbonate capacitors and recommended substitutes. 2012-6-2.
[41] Egress technicians keep raptor pilots covered. Pacaf.af.mil. Retrieved on 2011-02-26.
[42] F-22 Cockpit. Globalsecurity.org (2008-01-21). Retrieved on 2011-02-26.
[43] M. Parvin and J. G. Williams (1975). "The effect of temperature on the fracture of polycarbonate". Journal of Materials Science 10 (11): 1883. Bibcode:1975JMatS..10.1883P. doi:10.1007/BF00754478.
[44] http://www.olgr.nsw.gov.au/alcohol_restrictions_for_violent_venues.asp, http://www.olgr.qld.gov.au/industry/liquor_compliance/glass_bans/index.shtml
[45] http://polysafe.com.au/
[46] Hobby Applications of Polycarbonate November 19, 2012,
[47] http://www.tunablelasers.com/polymerlasers.htm
[48] Askari Mohammad Bagher, OLED Display Technology, American Journal of Optics and Photonics. Science PG, Vol. 2, No. 3, 2014, pp. 32-36.
[49] https://www.cdtltd.co.uk/technology/introduction-to-p-oleds/
[50] Joachim Luther, Michael Nast, M. Norbert Fisch, Dirk Christoffers, Fritz Pfisterer, Dieter Meissner, Joachim Nitsch "Solar Technology" 2002, Wiley-VCH, 2008 Weinheim. doi:10.1002/14356007.a24_369
[51] Jørgensen, M., K. Norrman, and F.C. Krebs (2008). "Stability/degradation of polymer solar cells". Solar Energy Materials and Solar Cells 92 (7): 686. doi:10.1016/j.solmat.2008.01.005.
[52] Po, Riccardo; Carbonera, Chiara; Bernardi, Andrea; Tinti, Francesca; Camaioni, Nadia (2012). "Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area". Solar Energy Materials and Solar Cells 100: 97. doi:10.1016/j.solmat.2011.12.022.
[53] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. (2006). "Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency". Advanced Materials 18 (6): 789. doi:10.1002/adma.200501717.
[54] You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao (5 February 2013). "A polymer tandem solar cell with 10.6% power conversion efficiency". Nature Communications 4. doi:10.1038/ncomms2411.
[55] Zyga, Lisa. "Inverted polymer solar cell efficiency sets world record". Phys.org. Retrieved 18 February 2015.
[56] Pivrikas, A.; Sariciftci, N. S.; Juška, G.; Österbacka, R. (2007). "A review of charge transport and recombination in polymer/fullerene organic solar cells". Progress in Photovoltaics: Research and Applications 15 (8): 677. doi:10.1002/pip.791.
[57] Tessler, Nir; Preezant, Yevgeni; Rappaport, Noam; Roichman, Yohai (2009). "Charge Transport in Disordered Organic Materials and Its Relevance to Thin-Film Devices: A Tutorial Review". Advanced Materials 21 (27): 2741. doi:10.1002/adma.200803541.
[58] Introduction to Organic Solar Cells, Askari Mohammad Bagher , Sustainable Energy, 2014, Vol. 2, No. 3, 85-90 Available online at http://pubs.sciepub.com/rse/2/3/2 © Science and Education Publishing DOI:10.12691/rse-2-3-2
[59] http://www.jenoptik.com/en-polymer-objective-lenses.
Cite This Article
  • APA Style

    Askari Mohammad Bagher, Bahrampour Mohammad Reza. (2015). Polymer Optic Technology. Optics, 4(1), 1-12. https://doi.org/10.11648/j.optics.20150401.11

    Copy | Download

    ACS Style

    Askari Mohammad Bagher; Bahrampour Mohammad Reza. Polymer Optic Technology. Optics. 2015, 4(1), 1-12. doi: 10.11648/j.optics.20150401.11

    Copy | Download

    AMA Style

    Askari Mohammad Bagher, Bahrampour Mohammad Reza. Polymer Optic Technology. Optics. 2015;4(1):1-12. doi: 10.11648/j.optics.20150401.11

    Copy | Download

  • @article{10.11648/j.optics.20150401.11,
      author = {Askari Mohammad Bagher and Bahrampour Mohammad Reza},
      title = {Polymer Optic Technology},
      journal = {Optics},
      volume = {4},
      number = {1},
      pages = {1-12},
      doi = {10.11648/j.optics.20150401.11},
      url = {https://doi.org/10.11648/j.optics.20150401.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.optics.20150401.11},
      abstract = {A polymer is a large molecule, or macromolecule, composed of many repeated subunits. Because of their broad range of properties, [1] both synthetic and natural polymers play an essential and ubiquitous role in everyday life.[2] Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass relative to small molecule compounds produces unique physical properties, including toughness, viscoelasticity, and a tendency to form glasses and semi crystalline structures rather than crystals. In this article we will investigate the role of polymers in optics and photonics and we will cite examples of polymers used in optics.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Polymer Optic Technology
    AU  - Askari Mohammad Bagher
    AU  - Bahrampour Mohammad Reza
    Y1  - 2015/04/18
    PY  - 2015
    N1  - https://doi.org/10.11648/j.optics.20150401.11
    DO  - 10.11648/j.optics.20150401.11
    T2  - Optics
    JF  - Optics
    JO  - Optics
    SP  - 1
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2328-7810
    UR  - https://doi.org/10.11648/j.optics.20150401.11
    AB  - A polymer is a large molecule, or macromolecule, composed of many repeated subunits. Because of their broad range of properties, [1] both synthetic and natural polymers play an essential and ubiquitous role in everyday life.[2] Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass relative to small molecule compounds produces unique physical properties, including toughness, viscoelasticity, and a tendency to form glasses and semi crystalline structures rather than crystals. In this article we will investigate the role of polymers in optics and photonics and we will cite examples of polymers used in optics.
    VL  - 4
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Payame Noor University, Tehran, Iran

  • Department of metallurgy, Shahid Dadbin institute of Kerman 171, Vocational and Technical University, Kerman, Iran

  • Sections