| Peer-Reviewed

Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals

Received: 15 May 2019     Accepted: 12 June 2019     Published: 13 July 2019
Views:       Downloads:
Abstract

In the 19th-century Egypt had a strong earthquake leads to damage of several mural paintings. Mural paintings in Ali kadkhoda house (El Rabiemaya), in Cairo, Egypt were among the affected. According to these damages the mural paintings were pre-consolidated and covered by medical gauze and animal glue as an adhesive under extremely dangerous conditions. The traditional conservation methodology as hot water, and acrylics that carried on these mural paintings to strip the medical gauze and animal glue showed no positive results and caused removal of the pigments. Viable bacterial cells of Pseudomonas stutzeri, were used with Broth- animal glue media mixed with agar as a delivery system (gel material) to remove the polymerized animal glue only in 3hours at 35°C. The effectiveness of the bio-cleaning test was assessed. The results confirmed the success of this cleaning biotechnology to remove the animal glue as an organic matter without side effects on the mural paintings pigments. The Bio-restoration technique was safe, low-cost, non-invasive, time saving, and risk-free. Silver nano particles were used to sterilization the mural paintings after final step in the bio-restoration process to insure the death of bacterial cells. At the end, the mural paintings were characterized using SEM-EDX, FTIR, and XRD.

Published in International Journal of Archaeology (Volume 7, Issue 1)
DOI 10.11648/j.ija.20190701.12
Page(s) 8-16
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Bio-Cleaning, Bio-restoration, Viable Cells, Pseudomonas stutzeri, Mural Paintings, Egypt

References
[1] Zaki, A. (1987) Encyclopedia of the city of Cairo in a thousand years. El Anglo publication, P. 49.
[2] Gomoiua, I., Mohanua, D., Radvanb, R., Dumbraviciana, M., Neagud SE, Cojocc LR, Enachec MI, Chelmusb A, Mohanud I.(2017) Environmental Impact on Biopigmentation of Mural Painting, Acta Physica Polonica, doi: 10.12693/APhysPolA.131.48.
[3] Abdel-Haliem, M. E. F., Sakra, A., Ali, M. F., Ghalya, M. F., Sohlenkamp, C. (2013) Characterization of Streptomyces isolates causing color changes of mural paintings in ancient Egyptian tombs. Microbiol. Res. 168: 428-437.
[4] Elhagrassy, A. F. (2018a) Isolation and characterization of actinomycetes from Mural paintings of Snu- Sert-Ankh tomb, their antimicrobial activity, and their biodeterioration Microbiological Research, 216: 47-55.
[5] Veneranda, M., Taboada, N. P., Fdez-Ortiz, de Vallejuelo, S., Maguregui, M., Marcaida, I., Castro, K., Madariaga, J. M., Osanna, M. (2017) Biodeterioration of Pompeian mural paintings: fungal colonization favoured by the presence of volcanic material residues. Environmental Science and Pollution Research, 24: 9599-1969.
[6] Elhagrassy, A. F. (2015) Bio cleaning Black Crust of culture heritage stone surface in Mohammed Ali Palace (Manial Palace) by using of Sulfate reducing Bacteria Desulfovibrio vulgaris. International Journal of New Technologies in Science and Engineering, 2: 12-19.
[7] Helmi, F. M., Elmitwalli, H. R., Rizk, M. A., Elhagrassy, A. F. (2011) Antibiotic extraction as a resent biocontrol method for Aspergillus niger and Aspergillus flavus fungi in Ancient Egyptian mural paintings, Mediterranean Archaeology and Archaeometry, 11: 1-7.
[8] Helmi, F. M., Elmitwalli, H. R., Elnagdy, S. M., ElHagrassy, A. F. (2016) Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis, Ecological Engineering 90: 367–371.
[9] Lustrato, G., Alfano, G., Andreotti, A., Colombini, M. P., Ranalli. G. (2012.) Fast biocleaning of mediaeval frescoes using viable bacterial cells. International Biodeterioration & Biodegradation, 69: 51-61.
[10] Roig, P. B. and Ranalli, G. (2014) The safety of biocleaning technologies for cultural heritage. Frontiers in Microbiology. doi: 10.3389/fmicb.2014.00155.
[11] Elhagrassy, A. F. and Hakeem, A. (2018b) Comparative Study of Biological Cleaning and Laser Techniques for Conservation of Weathered Stone in Failaka Island, Kuwait. Scientific Culture 4: 43-50. doi: 10.5281/zenodo.121456.
[12] Antonioli, P., Zapparoli, G., Abbruscato, P., Sorlini, C., Ranalli, G., Righetti, P. G. (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’’ cemetery. Proteomics, 5: 2453-2459.
[13] Roig, B. P., Estellés, R. M., Regidor-Ros, J. L., Roig-Picazo, P, Ranalli, G. (2012) New frontiers in the microbial bio-cleaning of artworks. Picturer Restorer, 41: 37-41.
[14] Ranalli, G., Alfano, G., Belli, C., Lustrato, G., Colombini, M. P., Bonaduce, I., Zanardini, E., Abbruscato, P., Cappitelli, F., Sorlini, C. (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol, 98: 73-83.
[15] Sorlini, C., Cappitelli, F. (2008) The application of viable bacteria for the biocleaning of Cultural Heritage surfaces. Coalition, 15: 18-20.
[16] Polo, A., Cappitelli, F., Brusetti, L., Principi, P., Villa, F., Giacomucci, L., Ranalli, G., Sorlini, C.(2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Environ Microbiol, 60: 1-14.
[17] Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M. (2011) Silver Nanoparticles as Potential Antiviral Agents. Molecules, 16: 8894-8918.
[18] Elhagrassy, A. F., Sameh, H. I., (2019) Novel Ag@ZnO core shell for Sterilization Mural paintings of King Tutankhamon Tomb (KV62), Velly of the King, Luxor, Egypt. (Under publication).
[19] Mora, P. 1974. Causes of Deterioration of Mural paintings, International center for the study of the preservation and restoration of cultural property, Rome.
[20] Harrison, S. M, Kaml, I., Prokoratova, V., Mazanek, M., Kenndler, E. (2005) Animal glues in mixtures of natural binding media used in artistic and historic objects: identification by capillary zone electrophoresis. Anal Bioanal Chem, 382: 1520-1526.
[21] Sarmiento, A., Pérez-Alonso, M., Olivares, M., Castro, K., Martínez-Arkarazo, I., Fernández, L. A., Madariaga, J. M. (2011) Classification and identification of organic binding media in artworks by means of Fouriertrans form infrared spectroscopy and principal component analysis. Anal Bioanal Chem, 399: 3601–3611.
[22] Wei, S., Schreiner, M., Rosenberg, E., Guo, H., Ma, Q. (2011) Identification of the binding media in Tang Dynasty Chinese wall paintings by using Py-GC/MS and GC/MS techniques. Int J Conserv Sci, 2: 77-88.
[23] Jeszeová1, L., Bauerová-Hlinková, V., Baráth, P., Puškárová, A., Bučková, M., Kraková, L., Pangallo, D. (2018) Biochemical and proteomic characterization of the extracellular enzymatic preparate of Exiguobacterium undae, suitable for efficient animal glue removal, Applied Microbiology and Biotechnology, 102: 6525–6536.
[24] Roig, B. P., Regidor Ros, J. L., Montes Estellés, R. (2011a) Biolimpieza de pintura mural con bacterias. In: Proceeding of the XVIII Congreso Internacional Conservacióny Restauración de Bienes Culturales, Granada, 517-519.
[25] Roig, B. P., Regidor Ros, J. L., Soriano Sancho, P., Doménech Carbó, M. T., Montes Estellés, R.. (2011b) Ensayos de biolimpieza con bacterias en pinturas murales. Arché 4-5. Editorial de la Universidad Politécnica de Valencia, Valencia, 115-122.
[26] Tiano, P., Cantisani, E., Sutherland, I., Paget, J. M., (2006) Bioremediated reinforcement of weathered calcareous stones. Journal of Cultural Heritage 7: 49-55.
[27] Alfano, G., Lustrato, G., Belli, C., Zanardini, E., Cappitelli, F., Mello, E., Sorlini, C., Ranalli, G., (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. International Biodeterioration and Biodegradation 65: 1004-1011.
[28] Webster, A., May, E., (2006) Bioremediation of weathered-building stone surface. Trends in Biotechnology 24: 255-260.
[29] Giorgi, R., Baglioni, M., Berti, D., Baglioni, P., (2010) New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Accounts of Chemical Research, 43: 695-704.
[30] Sajjad, S., and Nasseri, A. (2011) Synthesis and stabilization of Ag nanoparticles on a polyamide surface and its antibacterial effects. Int. Nano. Lett. 1: 22.
[31] Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M. (2015) Silver Nanoparticles as Potential Antibacterial Agents, Molecules, 20: 8856-8874.
Cite This Article
  • APA Style

    Abeer Fouad ElHagrassy. (2019). Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals. International Journal of Archaeology, 7(1), 8-16. https://doi.org/10.11648/j.ija.20190701.12

    Copy | Download

    ACS Style

    Abeer Fouad ElHagrassy. Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals. Int. J. Archaeol. 2019, 7(1), 8-16. doi: 10.11648/j.ija.20190701.12

    Copy | Download

    AMA Style

    Abeer Fouad ElHagrassy. Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals. Int J Archaeol. 2019;7(1):8-16. doi: 10.11648/j.ija.20190701.12

    Copy | Download

  • @article{10.11648/j.ija.20190701.12,
      author = {Abeer Fouad ElHagrassy},
      title = {Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals},
      journal = {International Journal of Archaeology},
      volume = {7},
      number = {1},
      pages = {8-16},
      doi = {10.11648/j.ija.20190701.12},
      url = {https://doi.org/10.11648/j.ija.20190701.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ija.20190701.12},
      abstract = {In the 19th-century Egypt had a strong earthquake leads to damage of several mural paintings. Mural paintings in Ali kadkhoda house (El Rabiemaya), in Cairo, Egypt were among the affected. According to these damages the mural paintings were pre-consolidated and covered by medical gauze and animal glue as an adhesive under extremely dangerous conditions. The traditional conservation methodology as hot water, and acrylics that carried on these mural paintings to strip the medical gauze and animal glue showed no positive results and caused removal of the pigments. Viable bacterial cells of Pseudomonas stutzeri, were used with Broth- animal glue media mixed with agar as a delivery system (gel material) to remove the polymerized animal glue only in 3hours at 35°C. The effectiveness of the bio-cleaning test was assessed. The results confirmed the success of this cleaning biotechnology to remove the animal glue as an organic matter without side effects on the mural paintings pigments. The Bio-restoration technique was safe, low-cost, non-invasive, time saving, and risk-free. Silver nano particles were used to sterilization the mural paintings after final step in the bio-restoration process to insure the death of bacterial cells. At the end, the mural paintings were characterized using SEM-EDX, FTIR, and XRD.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals
    AU  - Abeer Fouad ElHagrassy
    Y1  - 2019/07/13
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ija.20190701.12
    DO  - 10.11648/j.ija.20190701.12
    T2  - International Journal of Archaeology
    JF  - International Journal of Archaeology
    JO  - International Journal of Archaeology
    SP  - 8
    EP  - 16
    PB  - Science Publishing Group
    SN  - 2330-7595
    UR  - https://doi.org/10.11648/j.ija.20190701.12
    AB  - In the 19th-century Egypt had a strong earthquake leads to damage of several mural paintings. Mural paintings in Ali kadkhoda house (El Rabiemaya), in Cairo, Egypt were among the affected. According to these damages the mural paintings were pre-consolidated and covered by medical gauze and animal glue as an adhesive under extremely dangerous conditions. The traditional conservation methodology as hot water, and acrylics that carried on these mural paintings to strip the medical gauze and animal glue showed no positive results and caused removal of the pigments. Viable bacterial cells of Pseudomonas stutzeri, were used with Broth- animal glue media mixed with agar as a delivery system (gel material) to remove the polymerized animal glue only in 3hours at 35°C. The effectiveness of the bio-cleaning test was assessed. The results confirmed the success of this cleaning biotechnology to remove the animal glue as an organic matter without side effects on the mural paintings pigments. The Bio-restoration technique was safe, low-cost, non-invasive, time saving, and risk-free. Silver nano particles were used to sterilization the mural paintings after final step in the bio-restoration process to insure the death of bacterial cells. At the end, the mural paintings were characterized using SEM-EDX, FTIR, and XRD.
    VL  - 7
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Conservation Department, Faculty of Archaeology, Fayoum University, Fayoum, Egypt

  • Sections