Copper and fluoride ions were removed from wastewater by the coupling of electrocoagulation, fluidized bed and micro-electrolysis (EC/FB/ME) process. The results indicate that the use of aluminum electrode for simultaneous removal of copper and fluoride ions is better than iron electrode. By the orthogonal experiments study of the main factors influencing the efficiency of the treatment process, the best control parameters of this process were achieved in four aluminum electrodes, an initial pH of 5.0, a hydraulic retention time of 30 minutes, an applied voltage of 5V, a mass of iron-carbon (Fe/C) of 45g and the particle diameter of Fe/C of 20-27 mesh. With these conditions and the initial concentration of ions of 50mg/L, the residual concentration of copper and fluoride are 0.205 mg/L and 2.936 mg/L, respectively. The EC/FB/ME process is suitable for treatment of wastewater that fluoride concentration is less than 50 mg/L and copper concentration is less than 200 mg/L. This process was successfully applied to the treatment of a smelting wastewater sample.
Published in | American Journal of Chemical Engineering (Volume 2, Issue 6) |
DOI | 10.11648/j.ajche.20140206.13 |
Page(s) | 86-91 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Electrocoagulation, Micro-Electrolysis, Iron Electrode, Aluminum Electrode, Copper and Fluoride Ions, Fluidized Bed
[1] | T. A. Kurniawan, G. Y. S. Chan, W. H. Lu, S. Babel, “Physico-chemical treatment techniques for wastewater laden with heavy metals,” Chemical Engineering Journal, 2006, 118, pp. 83-98. |
[2] | Zh. Gu, Zh. H. Liao, M. Schulz, J. R. Davis, J. C. Bagents, J. Farrell, “Estimating Dosing Rates and Energy Consumption for Electrocoagulation Using Iron and Aluminum Electrodes,” Ind. Eng. Chem. Res., 2009, 48, pp. 3112-3117. |
[3] | U. Kurt, M. T. Gonullu, F. Ilhan, K. Varinca, “Treatment of domestic wastewater by Electrocoagulation in a cell with Fe–Fe electrodes,” Environmental Engineering Science, 2008, 25(2), pp. 153-162. |
[4] | Y. F. Zhou, M. Liu, Q. Wu, “Water quality improvement of a lagoon containing mixed chemical industrial wastewater by micro-electrolysis-contact oxidization,” Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2011, 12 (5), pp. 390-398. |
[5] | M. Kobya, O. T. Can, M. Bayramoglu, “Treatment of textile wastewaters by Electrocoagulation using iron and aluminium electrodes,” Journal of Hazardous Materials, 2003, B 100, pp. 163-178. |
[6] | N. Adhoum, L. Monser, “Decolourization and removal of phenolic compounds from olive mill wastewater by Electrocoagulation,” Chemical engineering and Processing, 2004, 43, pp. 1281-1287. |
[7] | J. Nouri, A. H. Mahvi, E. Bazrafshan, “Application of Electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminium electrodes,” International Journal of Environmental Research, 2010, 4, pp. 201-208. |
[8] | J. J. Yang, X. J. Xu ,G. Wang, W. Pan, H. Z. Yu, G. T. Zhen, T. Rui, “Treatment of zinc and lead smelting wastewater containing heavy metals by combined process of microelectrolysis with flocculation,” The Chinese jounal of nonferrous metals, 2012, 22(7), pp. 2125-2132. |
[9] | X. L. Dai, “Study on the treatment of chromium-containing wastewater of galvanization by utilizing the technology of micro-electrolysis and its application,” Industrial water treatment, 2005, 25(1), pp. 69-71. |
[10] | AWWA and WEF, “Standard Methods for the Examination of Water and Wastewater,” American Water Works Association and Water Environment Federation, Washington, D.C, 1998. |
[11] | D. Konstantinos, A. Christoforidis, E. Valsamidou, “Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by Electrocoagulation,” International Journal of Environmental Sciences, 2011, 1(5), pp. 697-710. |
[12] | N. Mameri, A. R. Yeddou, H. Lounici, D. Belhocine, H. Grib, B. Bariou, “Defuorination of septentrional Sahara water of North Africa by Electrocoagulation process using bipolar aluminium electrodes,” Water Research, 1998, 32(5), pp. 1604–1612. |
[13] | K. Chomsamutr, S. Jongprasithporn, “Optimization parameters of tool life model using the Taguchi approach and response surface methodology,” IJCSI International Journal of Computer Science, 2012, 9, 1(3), pp. 120-125. |
[14] | Z. Zaroual, M. Azzi, N. Sai, E. Chainet, “Contribution to the study of Electrocoagulation mechanism in basic textile effluent,” Journal of Hazardous Materials, 2006, 131(1-3), pp. 73-78. |
[15] | P. T. Bolger and D. C. Szlag, “Electrochemical treatment and reuse of nickel plating rinse waters,” Environmental Progress, 2004, 21, pp. 203-208. |
[16] | T. Picard, G. C. Feuillade, M. Mazet, C. Vandensteendam, “Cathodic dissolution in the electrocoagulation process using aluminum electrodes,” J. En iron. Monit. , 2000, 2, pp. 77–80. |
[17] | M. M. Emamjomeh, M. Sivakumar, “Denitrification using a monopolar Electrocoagulation/flotation (ECF) process,” Journal of Environmental Management, 2009, 91, pp. 516-522. |
[18] | F. Shen, X. M. Chen, P. Gao, G. H. Chen, “Electrochemical removal of fluoride ions from industrial wastewater,” Chemical Engineering Science, 2003, 58, pp. 987 – 993. |
[19] | C. Hicyilmaz, S. Bilgen, K. E. Ozbas, “The effect of dissolved species on hydrophobic aggregation of fluorite,” Colloids and Surfaces, 1997, 121, pp. 15–21. |
[20] | J. Zhu, H. Zh. Zhao, J. R. Ni, “Fluoride distribution in Electrocoagulation defluoridation process,” Elsevier Separation and Purification Technology, 2007, 56, pp. 184-191. |
[21] | C.Y. Hu, S.L. Lo, W.H. Kuan, “Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes,” Water Res. , 2003, 37, pp. 4513–4523. |
[22] | M. Lui, R.Y. Sun, J.H. Zhang, Y. Bina, L. Wei, “Elimination of excess fluoride in potablewaterwith coarcervation by electrolysis using aluminum anode,” Fluoride, 1983, 20, pp. 54–63. |
[23] | C. Y. Hu, S. L. Lo, W. H. Kuan, “Effects of themolar ratio of hydroxide and fluoride to Al(III) on fluoride removal by coagulation and electrocoagulation,” J. Colloid Interface Sci., 2005, 283, pp. 472–476. |
APA Style
Vo Anh Khue, Li Tian Guo, Xu Xiao Jun, Yue Xiu Lin, Peng Rui Hao. (2014). Removal of Copper and Fluoride from Wastewater by the Coupling of Electrocoagulation, Fluidized Bed and Micro-Electrolysis (EC/FB/ME) Process. American Journal of Chemical Engineering, 2(6), 86-91. https://doi.org/10.11648/j.ajche.20140206.13
ACS Style
Vo Anh Khue; Li Tian Guo; Xu Xiao Jun; Yue Xiu Lin; Peng Rui Hao. Removal of Copper and Fluoride from Wastewater by the Coupling of Electrocoagulation, Fluidized Bed and Micro-Electrolysis (EC/FB/ME) Process. Am. J. Chem. Eng. 2014, 2(6), 86-91. doi: 10.11648/j.ajche.20140206.13
AMA Style
Vo Anh Khue, Li Tian Guo, Xu Xiao Jun, Yue Xiu Lin, Peng Rui Hao. Removal of Copper and Fluoride from Wastewater by the Coupling of Electrocoagulation, Fluidized Bed and Micro-Electrolysis (EC/FB/ME) Process. Am J Chem Eng. 2014;2(6):86-91. doi: 10.11648/j.ajche.20140206.13
@article{10.11648/j.ajche.20140206.13, author = {Vo Anh Khue and Li Tian Guo and Xu Xiao Jun and Yue Xiu Lin and Peng Rui Hao}, title = {Removal of Copper and Fluoride from Wastewater by the Coupling of Electrocoagulation, Fluidized Bed and Micro-Electrolysis (EC/FB/ME) Process}, journal = {American Journal of Chemical Engineering}, volume = {2}, number = {6}, pages = {86-91}, doi = {10.11648/j.ajche.20140206.13}, url = {https://doi.org/10.11648/j.ajche.20140206.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20140206.13}, abstract = {Copper and fluoride ions were removed from wastewater by the coupling of electrocoagulation, fluidized bed and micro-electrolysis (EC/FB/ME) process. The results indicate that the use of aluminum electrode for simultaneous removal of copper and fluoride ions is better than iron electrode. By the orthogonal experiments study of the main factors influencing the efficiency of the treatment process, the best control parameters of this process were achieved in four aluminum electrodes, an initial pH of 5.0, a hydraulic retention time of 30 minutes, an applied voltage of 5V, a mass of iron-carbon (Fe/C) of 45g and the particle diameter of Fe/C of 20-27 mesh. With these conditions and the initial concentration of ions of 50mg/L, the residual concentration of copper and fluoride are 0.205 mg/L and 2.936 mg/L, respectively. The EC/FB/ME process is suitable for treatment of wastewater that fluoride concentration is less than 50 mg/L and copper concentration is less than 200 mg/L. This process was successfully applied to the treatment of a smelting wastewater sample.}, year = {2014} }
TY - JOUR T1 - Removal of Copper and Fluoride from Wastewater by the Coupling of Electrocoagulation, Fluidized Bed and Micro-Electrolysis (EC/FB/ME) Process AU - Vo Anh Khue AU - Li Tian Guo AU - Xu Xiao Jun AU - Yue Xiu Lin AU - Peng Rui Hao Y1 - 2014/11/20 PY - 2014 N1 - https://doi.org/10.11648/j.ajche.20140206.13 DO - 10.11648/j.ajche.20140206.13 T2 - American Journal of Chemical Engineering JF - American Journal of Chemical Engineering JO - American Journal of Chemical Engineering SP - 86 EP - 91 PB - Science Publishing Group SN - 2330-8613 UR - https://doi.org/10.11648/j.ajche.20140206.13 AB - Copper and fluoride ions were removed from wastewater by the coupling of electrocoagulation, fluidized bed and micro-electrolysis (EC/FB/ME) process. The results indicate that the use of aluminum electrode for simultaneous removal of copper and fluoride ions is better than iron electrode. By the orthogonal experiments study of the main factors influencing the efficiency of the treatment process, the best control parameters of this process were achieved in four aluminum electrodes, an initial pH of 5.0, a hydraulic retention time of 30 minutes, an applied voltage of 5V, a mass of iron-carbon (Fe/C) of 45g and the particle diameter of Fe/C of 20-27 mesh. With these conditions and the initial concentration of ions of 50mg/L, the residual concentration of copper and fluoride are 0.205 mg/L and 2.936 mg/L, respectively. The EC/FB/ME process is suitable for treatment of wastewater that fluoride concentration is less than 50 mg/L and copper concentration is less than 200 mg/L. This process was successfully applied to the treatment of a smelting wastewater sample. VL - 2 IS - 6 ER -