Williams [16] and later Yao, Xia and Jin[15] discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of σ(n),σ(n/2),σ(n/3) and σ(n/6) and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of σ_3 (n),σ_3 (n/2),σ_3 (n/3) and σ_3 (n/6). Here, we will express the even Fourier coefficients of 324 eta quotients in terms of σ_17 (n),σ_17 (n/2),σ_17 (n/3),σ_17 (n/4),σ_17 (n/6) and σ_17 (n/12).
Published in | Pure and Applied Mathematics Journal (Volume 4, Issue 4) |
DOI | 10.11648/j.pamj.20150404.17 |
Page(s) | 178-188 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Dedekind Eta Function, Eta Quotients, Fourier Series
[1] | Ayşe Alaca, Şaban Alaca and Kenneth S. Williams, On the two-dimensional theta functions of Borweins, Acta Arith. 124 (2006) 177-195. Carleton University, Ottawa, Ontario, Canada K1S 5B6. E-mail: aalaca@math.carleton.ca, salaca@math.carleton.ca, williams@math.carleton.ca |
[2] | Evaluation of the convolution sums ∑_(l+12m=n)▒σ (l)σ(m) and ∑_(3l+4m=n)▒σ (l)σ(m), Adv. Theor. Appl. Math. 1(2006), 27-48. |
[3] | Basil Gordon, Some identities in combinatorial analysis, Quart. J. Math. Oxford Ser.12 (1961), 285-290. University of California, Los Angeles |
[4] | Basil Gordon1 and Sınai Robins2 , Lacunarity of Dedekind η-products, Glasgow Math. J. 37 (1995), 1-14. 1University of California, Los Angeles, 2University of Northern Colorado, Greeley |
[5] | Fred Diamond1, Jerry Shurman2, A First Course in Modular Forms,Springer Graduate Texts in Mathematics 228 1Brandeis University Waltham, MA 02454 USA, 2Reed College Portland, OR 97202 USA E-mail: fdiamond@brandeis.edu, jerry@reed.edu |
[6] | Victor G. Kac, Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula, Adv. Math. 30 (1978) 85-136. MIT, Cambridge, Massachusetts 02139 |
[7] | Barış Kendirli, "Evaluation of Some Convolution Sums by Quasimodular Forms", European Journal of Pure and Applied Mathematics ISSN 13075543 Vol.8., No. 1, Jan. 2015, pp. 81-110 Aydın University Istanbul/Turkey E-mail:baris.kendirli@gmail.com |
[8] | "Evaluation of Some Convolution Sums and Representation Numbers of Quadratic Forms of Discriminant 135", British Journal of Mathematics and Computer Science, Vol6/6, Jan. 2015, pp. 494-531. |
[9] | Evaluation of Some Convolution Sums and the Representation numbers, Ars Combinatoria Volume CXVI, July, pp 65-91. |
[10] | Cusp Forms in S_4 (Γ_0 (79)) and the number of representations of positive integers by some direct sum of binary quadratic forms with discriminant -79, Bulletin of the Korean Mathematical Society Vol 49/3 2012 |
[11] | Cusp Forms in S_4 (Γ_0 (47)) and the number of representations of positive integers by some direct sum of binary quadratic forms with discriminant -47,Hindawi , International Journal of Mathematics and Mathematical Sciences Vol 2012, 303492 10 pages |
[12] | The Bases of M〖_4〗(Γ_0 (71)),M〖_6〗(Γ_0 (71)) and the Number of Representations of Integers, Hindawi, Mathematical Problems in Engineering Vol 2013, 695265, 34 pages |
[13] | Günter Köhler, Eta Products and Theta Series Identities (Springer-Verlag, Berlin, 2011). University of Würzburg Am Hubland 97074 Würzburg Germany E-mail:koehler@mathematik.uni-wuerzburg.de |
[14] | Ian Grant Macdonald, Affine root systems and Dedekind’s η-function, Invent. Math. 15 (1972), 91-143. |
[15] | Olivia X. M. Yao1, Ernest X. W. Xia2 and J. Jin3, Explicit Formulas for the Fourier coefficients of a class of eta quotients, International Journal of Number Theory Vol. 9, No. 2 (2013) 487-503. 1,2Jiangsu University Zhenjiang, Jiangsu, 212013, P. R. China 3Nanjing Normal University Taizhou College, 225300, Jiangsu, P. R. China E-mail:yaoxiangmei@163.com, ernestxwxia@163.com, jinjing19841@126.com |
[16] | Kenneth S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), 993-1004. Carleton University, Ottawa, Ontario, Canada K1S 5B6 E-mail: williams@math.carleton.ca. |
APA Style
Baris Kendirli. (2015). Fourier Coefficients of a Class of Eta Quotients of Weight 18 with Level 12. Pure and Applied Mathematics Journal, 4(4), 178-188. https://doi.org/10.11648/j.pamj.20150404.17
ACS Style
Baris Kendirli. Fourier Coefficients of a Class of Eta Quotients of Weight 18 with Level 12. Pure Appl. Math. J. 2015, 4(4), 178-188. doi: 10.11648/j.pamj.20150404.17
AMA Style
Baris Kendirli. Fourier Coefficients of a Class of Eta Quotients of Weight 18 with Level 12. Pure Appl Math J. 2015;4(4):178-188. doi: 10.11648/j.pamj.20150404.17
@article{10.11648/j.pamj.20150404.17, author = {Baris Kendirli}, title = {Fourier Coefficients of a Class of Eta Quotients of Weight 18 with Level 12}, journal = {Pure and Applied Mathematics Journal}, volume = {4}, number = {4}, pages = {178-188}, doi = {10.11648/j.pamj.20150404.17}, url = {https://doi.org/10.11648/j.pamj.20150404.17}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20150404.17}, abstract = {Williams [16] and later Yao, Xia and Jin[15] discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of σ(n),σ(n/2),σ(n/3) and σ(n/6) and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of σ_3 (n),σ_3 (n/2),σ_3 (n/3) and σ_3 (n/6). Here, we will express the even Fourier coefficients of 324 eta quotients in terms of σ_17 (n),σ_17 (n/2),σ_17 (n/3),σ_17 (n/4),σ_17 (n/6) and σ_17 (n/12).}, year = {2015} }
TY - JOUR T1 - Fourier Coefficients of a Class of Eta Quotients of Weight 18 with Level 12 AU - Baris Kendirli Y1 - 2015/08/12 PY - 2015 N1 - https://doi.org/10.11648/j.pamj.20150404.17 DO - 10.11648/j.pamj.20150404.17 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 178 EP - 188 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20150404.17 AB - Williams [16] and later Yao, Xia and Jin[15] discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of σ(n),σ(n/2),σ(n/3) and σ(n/6) and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of σ_3 (n),σ_3 (n/2),σ_3 (n/3) and σ_3 (n/6). Here, we will express the even Fourier coefficients of 324 eta quotients in terms of σ_17 (n),σ_17 (n/2),σ_17 (n/3),σ_17 (n/4),σ_17 (n/6) and σ_17 (n/12). VL - 4 IS - 4 ER -