| Peer-Reviewed

Effect of the Shape Surface of Absorber Plate on Performance of Built-in-Storage Solar Water Heater

Received: 6 October 2014     Accepted: 16 October 2014     Published: 30 October 2014
Views:       Downloads:
Abstract

An experimental and numerical study was carried out on a storage solar collectors to verify its suitability for domestic use. These storage collectors can be used as storage water tanks to replace the ordinary cubical or cylindrical tank commonly used in Iraqi houses. The paper includes study the effect of the shape surface of absorber plate on performance of storage solar collector by construction of three-box type, built –in-storage water heaters with three different shape of front absorber plat, flat, wavy, and zigzag shapes. Experiments were conducted in summer and autumn seasons, and the results were comparable to the theoretical calculation. The results indicated clearly that the storage collector can be used for providing hot water for domestic uses, the zigzag storage collector was the best to obtain a high temperature than the other two designs, also the finite difference model proved to be useful for prediction of water temperatures under variable operating conditions.

Published in Journal of Energy and Natural Resources (Volume 3, Issue 5)
DOI 10.11648/j.jenr.20140305.11
Page(s) 58-65
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Solar Energy, Storage Solar Collector, Absorber Plate

References
[1] Duffie, J. and Beckman, W., 1991, Solar energy thermal processes, John Wiley and Sons, New York.
[2] Garge, H.P and Rani, U., 1982, Theoretical and experimental studies on collector/storage type solar water heater, Solar energy, Vol.29, pp.467-478.
[3] Vaxman, M. and Sokolov, M., 1985, Experiments with an integral compact solar water heater, Solar energy, Vol. 34, No. 6, pp. 447-454.
[4] Muneer, T., 1985, Effect of design parameters on performance of built-in storage solar water heater; Energy conservation and Management Vol. 25, No. 3, pp. 277-281.
[5] Khadiar ,M, 1987, Solar storage by using a bed of rock, M.Sc thesis, Mechanical engineering department, University of Basra.
[6] Mohamed, A.A.,1997, Integrated solar 'collector-storage tank system with thermal diode; Solar Energy, Vol. 61, pp. 221-218.
[7] Farhan, .A, 2002, Computational model for a prism shaped storage solar collector with a right triangular cross section, M.Sc thesis, Mechanical engineering department, University of Baghdad.
[8] Alawi, W.H, 2004, Numerical and experimental study of the solar collector storage pyramidical with right angle, M.Sc. Thesis, University of Technology, Baghdad.
[9] Junaidi HA, Henderson D, Muneer T, Grassie T, Currie J,2002, Study of stratification in a (ICSSWH) integrated collector storage solar water heater, Ninth AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, California.
[10] Jose´ M.S. Cruz, Geoffrey P. Hammond, Albino J.P.S. Reis,2002, Thermal performance of a trapezoidal-shaped solar collector/energy store, Applied Energy; 73 pp.195–212.
[11] Buchberg, H., Catton, I., and Edwards, D.K., 1976, Natural convection in enclosed spaces- A review of application of solar collection, Trans of the ASME, J. of Heat transfer, Vol. 98, pp. 182-188.
[12] Test, F.L., 1976, Parametric study of flat-plate solar collectors, J. of Energy conversion, Vol. 16, pp.23-33.
[13] Whillier, A, 1977, Prediction of performance of solar collector, ASHREA GRP 170, Application of solar energy for heating and cooling of building, Edited by Jordon, R.C. and Liu, B.Y.H., ASHREA.
[14] Faiman, D., 1984, Towards a standard method for determining the efficiency of integrated collector – storage solar water heaters, Solar energy 33, pp. 45-463.
Cite This Article
  • APA Style

    Omer Khalil Ahmad, Ahmed Hassan Ahmed, Obiad Majeed Ali. (2014). Effect of the Shape Surface of Absorber Plate on Performance of Built-in-Storage Solar Water Heater. Journal of Energy and Natural Resources, 3(5), 58-65. https://doi.org/10.11648/j.jenr.20140305.11

    Copy | Download

    ACS Style

    Omer Khalil Ahmad; Ahmed Hassan Ahmed; Obiad Majeed Ali. Effect of the Shape Surface of Absorber Plate on Performance of Built-in-Storage Solar Water Heater. J. Energy Nat. Resour. 2014, 3(5), 58-65. doi: 10.11648/j.jenr.20140305.11

    Copy | Download

    AMA Style

    Omer Khalil Ahmad, Ahmed Hassan Ahmed, Obiad Majeed Ali. Effect of the Shape Surface of Absorber Plate on Performance of Built-in-Storage Solar Water Heater. J Energy Nat Resour. 2014;3(5):58-65. doi: 10.11648/j.jenr.20140305.11

    Copy | Download

  • @article{10.11648/j.jenr.20140305.11,
      author = {Omer Khalil Ahmad and Ahmed Hassan Ahmed and Obiad Majeed Ali},
      title = {Effect of the Shape Surface of Absorber Plate on Performance of Built-in-Storage Solar Water Heater},
      journal = {Journal of Energy and Natural Resources},
      volume = {3},
      number = {5},
      pages = {58-65},
      doi = {10.11648/j.jenr.20140305.11},
      url = {https://doi.org/10.11648/j.jenr.20140305.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jenr.20140305.11},
      abstract = {An experimental and numerical study was carried out on a storage solar collectors to verify its suitability for domestic use. These storage collectors can be used as storage water tanks to replace the ordinary cubical or cylindrical tank commonly used in Iraqi houses. The paper includes study the effect of the shape surface of absorber plate on performance of storage solar collector by construction of three-box type, built –in-storage water heaters with three different shape of front absorber plat, flat, wavy, and zigzag shapes. Experiments were conducted in summer and autumn seasons, and the results were comparable to the theoretical calculation. The results indicated clearly that the storage collector can be used for providing hot water for domestic uses, the zigzag storage collector was the best to obtain a high temperature than the other two designs, also the finite difference model proved to be useful for prediction of water temperatures under variable operating conditions.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Effect of the Shape Surface of Absorber Plate on Performance of Built-in-Storage Solar Water Heater
    AU  - Omer Khalil Ahmad
    AU  - Ahmed Hassan Ahmed
    AU  - Obiad Majeed Ali
    Y1  - 2014/10/30
    PY  - 2014
    N1  - https://doi.org/10.11648/j.jenr.20140305.11
    DO  - 10.11648/j.jenr.20140305.11
    T2  - Journal of Energy and Natural Resources
    JF  - Journal of Energy and Natural Resources
    JO  - Journal of Energy and Natural Resources
    SP  - 58
    EP  - 65
    PB  - Science Publishing Group
    SN  - 2330-7404
    UR  - https://doi.org/10.11648/j.jenr.20140305.11
    AB  - An experimental and numerical study was carried out on a storage solar collectors to verify its suitability for domestic use. These storage collectors can be used as storage water tanks to replace the ordinary cubical or cylindrical tank commonly used in Iraqi houses. The paper includes study the effect of the shape surface of absorber plate on performance of storage solar collector by construction of three-box type, built –in-storage water heaters with three different shape of front absorber plat, flat, wavy, and zigzag shapes. Experiments were conducted in summer and autumn seasons, and the results were comparable to the theoretical calculation. The results indicated clearly that the storage collector can be used for providing hot water for domestic uses, the zigzag storage collector was the best to obtain a high temperature than the other two designs, also the finite difference model proved to be useful for prediction of water temperatures under variable operating conditions.
    VL  - 3
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Technical institute of Hawija, Foundation of technical education, Baghdad, Iraq

  • Technical institute of Hawija, Foundation of technical education, Baghdad, Iraq

  • Technical institute of Hawija, Foundation of technical education, Baghdad, Iraq

  • Sections