In this paper the authors report the optimizations of the DNA and RNA bases (adenine, cytosine, thymine, guanine and uracil) for to determine the electronic proprieties and are employed the LSDA/6-31++G, PBE/6-31++G, PBE/LANL2DZ and PBE/SDD levels of theory both in gas phase and in the presence of the solvent water with the actual implementation of the polarized continuum model of Tomasi (PCM). And to provide the IPV, EAV, hardness, dipole moment and electronegativity (χ). The vibrational frequencies are description to purine and pyrimidine bases.
Published in | International Journal of Computational and Theoretical Chemistry (Volume 2, Issue 4) |
DOI | 10.11648/j.ijctc.20140204.11 |
Page(s) | 26-40 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Purine and Pyrimidine, Electronic Proprieties, DFT for DNA and RNA
[1] | Prashant Jain, Pradeep T., Biotecn. andBioing. 2005, 90, 1, pp. 59-63. |
[2] | Ivan Sondi, Branka S. Sondi, J. Colloidal Interface Science 2004, 275, pp. 177-182. |
[3] | Russo N., Toscamo M., Grand A., J. Am. Chem. Soc. 2001, 123, pp. 10272. |
[4] | Shuxi Dai, Xingtang Zhang, Tianfeng Li, et all., Applied Surface Science 2005, 249, 1-4, pp. 346-353. |
[5] | Famulari A., Moroni F., Sironi M., Gianinetti E., Raimondi M., J. Molec. Struct.(Theochem) 2000, pp. 529, 209. |
[6] | Ford G.P., Scribner J.D., Chem. Res. Toxicol.1990, 3, pp. 219. |
[7] | Cardona J.P., Lippard S.J., Gait M.J., Singh M., J. Am. Chem. Soc. 1982, 104, pp. 5793. |
[8] | Basch H., Krauss M., Stevens W.J., Cohen D., Inorg. Chem. 1986, 25, pp. 684. |
[9] | Nakayama N., Tanaka S., Kikuchi O., J. Theor. Biol. 2002, 215, pp. 13. |
[10] | J.R. Wiley, J.M.Robinson, S. Ehdaie, E.C.M. Chen, E.S.D. Chen, W.E. Wentworth, Biochem. Biophys.Res. Comm. 1991, 180, pp. 841. |
[11] | E.C.M., Chen, E.S.D., W.E. Wentworth, Biochem. Biophys. Res. Commun.1990, 171, 97. |
[12] | K. Aflatooni, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A. 1998, 102, pp. 6205. |
[13] | V.M. Orlov, A.N. Smirnov, Ya M. Varshavsky, Tetrahedron Lett. 1976, 17, pp. 4377-4378. |
[14] | N.S. Hush, S.C. Agnes, Chem. Phys. Lett. 1975, 34, pp. 11. |
[15] | D.S. Michael, B. Brent, C.A.-Odile, J. Phys. Chem. 1994, 99, pp. 1060. |
[16] | A.-O. Colson, B. Brent, M.D. Sevilla, J. Phys. Chem. 1993, 97, pp. 13852. |
[17] | Carlos E. Crespo-Hernández, R. Arce, Y. Ishikawa, L. Gorb, J. Leszczynski, D.M. Close, J. Phys. Chem. A. 2004, 108, pp. 6373-6377 |
[18] | A. Kumar, M.K. Mohammady, P.C. Mishra, S. Suhai, J. Comput. Chem. 2004, 25, pp. 1047. |
[19] | X Lee, Z. Cai, M.D. Sevilla, J. Phys. Chem A 2002, 106, pp. 9345. |
[20] | S.S. Wesolowski, M.L. Leininger, P.N. Pentchev, H.F. Schaefer, J. Am. Chem. Soc. 2001, 123, pp. 4023. |
[21] | S.D. Wetmore, R.J. Boyd, L.A. Enksson, Chem Phys. Lett. 2000, 322, pp. 129. |
[22] | M.D. Sevilla, B. Bosler, A.O. Colson, J. Phys. Chem. 1995, 99, pp. 1060. |
[23] | David M. Close, J. Phys. Chem. A. 2004, 108, pp. 10376-10379. |
[24] | Ulf Norinder, J. Molecular Structure (Theochem) 1987, 151, pp. 259-269. |
[25] | Preuss M., Schmidt W.G., Seino K., Furthmuller J., Bechstedt F., J. Comput. Chem. 2004, 25, pp. 112. |
[26] | Fogarasi G., J. Phys. Chem A, 2002, 106, pp. 1381. |
[27] | Podolyan Y., Rubin Y.V., Leszczynski J., J. Phy.s Chem. A 2000, 104, pp. 9964. |
[28] | Peter Pulay,Svein S., Massimo M., Jon Baker,J. Comput. Chem. 2005, 26 (6), pp. 599-605. |
[29] | Xifeng Li, ZhongliCai, Michael D. Sevilla, J. Phys. Chem. A, 2002, 106, pp. 1596-1603. |
[30] | Attila Szabo, Neil S. Ostlund, “Modern Quantum Chemistry”, Dover Publications, Inc., Mineola, New York, 1996, pp. 212 |
[31] | M. Virginia Popa, Rev. Mex. Fís. 2007, 53(4), pp. 241-253. |
[32] | Irma N.Kolomietset.al., J. Molec. Struct., 1991, 250(1), pp. 1-11. |
[33] | Hye-Young H. Kim, M. Cooper, LubomirV.N., Constance M.H. and Thomas M.H., Chem. Res. Toxicol. 2001, 14(9), pp. 1306-1314. |
[34] | Gareth K. Forde et al., J. Phys. Chem. A, 2006, 110(69), pp. 2308-2313. |
[35] | Marzili L.G., Kistenmacher and Eichhorn G.L., (Ed. John Wiley Sons, New York, 1980) pp.179. |
[36] | Fan J-Y Tercel M. and Denny W.A., Anti-Cancer Drug Design 1997, 12(4), pp. 277-293. |
[37] | J. Schiedt, R. Weinjauf, D.M. Neumark, E.W. Schlang, Chemical Physics 1998, pp. 511-524. |
[38] | Netmore S.D., Boyd R. J., Enksonn L.A., Chem. Phys. Lett., 322, 129, pp. 1997. |
APA Style
Mariana Virginia Popa. (2014). Computation of Electronic Proprieties of the DNA and RNA Bases. International Journal of Computational and Theoretical Chemistry, 2(4), 26-40. https://doi.org/10.11648/j.ijctc.20140204.11
ACS Style
Mariana Virginia Popa. Computation of Electronic Proprieties of the DNA and RNA Bases. Int. J. Comput. Theor. Chem. 2014, 2(4), 26-40. doi: 10.11648/j.ijctc.20140204.11
AMA Style
Mariana Virginia Popa. Computation of Electronic Proprieties of the DNA and RNA Bases. Int J Comput Theor Chem. 2014;2(4):26-40. doi: 10.11648/j.ijctc.20140204.11
@article{10.11648/j.ijctc.20140204.11, author = {Mariana Virginia Popa}, title = {Computation of Electronic Proprieties of the DNA and RNA Bases}, journal = {International Journal of Computational and Theoretical Chemistry}, volume = {2}, number = {4}, pages = {26-40}, doi = {10.11648/j.ijctc.20140204.11}, url = {https://doi.org/10.11648/j.ijctc.20140204.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20140204.11}, abstract = {In this paper the authors report the optimizations of the DNA and RNA bases (adenine, cytosine, thymine, guanine and uracil) for to determine the electronic proprieties and are employed the LSDA/6-31++G, PBE/6-31++G, PBE/LANL2DZ and PBE/SDD levels of theory both in gas phase and in the presence of the solvent water with the actual implementation of the polarized continuum model of Tomasi (PCM). And to provide the IPV, EAV, hardness, dipole moment and electronegativity (χ). The vibrational frequencies are description to purine and pyrimidine bases.}, year = {2014} }
TY - JOUR T1 - Computation of Electronic Proprieties of the DNA and RNA Bases AU - Mariana Virginia Popa Y1 - 2014/10/20 PY - 2014 N1 - https://doi.org/10.11648/j.ijctc.20140204.11 DO - 10.11648/j.ijctc.20140204.11 T2 - International Journal of Computational and Theoretical Chemistry JF - International Journal of Computational and Theoretical Chemistry JO - International Journal of Computational and Theoretical Chemistry SP - 26 EP - 40 PB - Science Publishing Group SN - 2376-7308 UR - https://doi.org/10.11648/j.ijctc.20140204.11 AB - In this paper the authors report the optimizations of the DNA and RNA bases (adenine, cytosine, thymine, guanine and uracil) for to determine the electronic proprieties and are employed the LSDA/6-31++G, PBE/6-31++G, PBE/LANL2DZ and PBE/SDD levels of theory both in gas phase and in the presence of the solvent water with the actual implementation of the polarized continuum model of Tomasi (PCM). And to provide the IPV, EAV, hardness, dipole moment and electronegativity (χ). The vibrational frequencies are description to purine and pyrimidine bases. VL - 2 IS - 4 ER -