| Peer-Reviewed

Analysis of Sunspot Time Series During the Ascending Phase of Solar Cycle 24 Using the Wavelet Transform

Received: 6 July 2016     Accepted: 18 July 2016     Published: 17 August 2016
Views:       Downloads:
Abstract

The sunspots are widely used to measure the rotational rate of solar surface. We are interested in analysis of the temporal evaluation of the short-term period present in sunspot time series (i.e. sunspot number and area) during the ascending phase of Solar Cycle 24. For the better understanding of variation in solar activity originated at different layers of the solar atmosphere with respect to sunspot cycles, we study the phase relation between sunspot numbers and sunspot areas using cross correlation analysis techniques based on extended wavelet based approaches such as continuous wavelet transform, cross-wavelet transform, and wavelet coherence. In this study we found the short-term periodicity “27 days-rotational rate of Sun” for current solar cycle 24 (January2008-May2013), which suggested that the Solar Cycle24 has minimum solar activity. We have also investigated the correlation between both parameters and identify the unusual conditions in space weather.

Published in American Journal of Modern Physics (Volume 5, Issue 5)
DOI 10.11648/j.ajmp.20160505.11
Page(s) 79-86
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Sunspots, Rotational Rate of Sun, Solar Cycle, Solar Activity, Wavelet Analysis

References
[1] Bartels, J. (1934). Terr. Magn. Atmos. Elec., 39, 201.
[2] Watari, S. (1996). Solar Phys. 168, 413.
[3] Polygiannakis, J., Preka-papadema, P., Petropoulos, B., Pothitakis, G., Moussas, X., pappas, G., Hilliaris, A. (2002). In: H. Swaya- Lacoste (ed.) SOLMAG2002. Proc. Magnetic Coupling of the Solar Atmosphere Euro conference, ESASP-505, 537.
[4] Katsavrias, C., Preka Papadema, P., Moussas, X. (2012). Wavelet Analysis on Solar Wind Parameters and Geomagnetic Indices. SolarPhys. DOI10.1007/s11207-012-0078-6.
[5] Lean, J. L., Brueckner, G. E. (1989). intermediate–term solar periodicities:100-500days, ApJ, 337, 568.
[6] Lean, J. L. (1990). Evolution of the 155 day periodicity in sunspot areas during solar cycles 12 to 21, Astrophys. J. 363, 718.
[7] Carbonell, M., Ballester, J. L. (1992). Astron. Astrophys. 255, 350.
[8] Oliver, R., Carbonell, M. and Ballester, L. (1992). Sol. Phys., 137, 141.
[9] Krivova, N. A., Solanki, S. K. (2002). Astron. Astrophys.394, 701.
[10] Richardson, I. G. and Cane, H. V.: 2005, Geophys. Res. Lett., 32, Lo 2104.
[11] Atac, T., Ozguc, A., Rybak, J. (2006). Solar Phys. 237, 433.
[12] Joshi, B., Pant, P., Manoharan, P. K. (2006). Astron. Astrophys. 452, 647.
[13] Rieger, E., Share, G. H., Forrest, D. J., Kambach, G., Reppin, C., Chupp, E. L.(1984). Nature, 312, 623.
[14] Kiplinger, A. L., Dennis, B. R., Orwig, L. E. (1984). BAAS, 16, 891.
[15] Dennis, B. R. (1985). SolarPhys., 100, 465.
[16] Ichimoto, K., Kubota, J., Suzuki, M., Tohmura, I., Kurokawa, H. (1985). Nature, 316, 422.
[17] Delache, P. H., Laclare, F., Sadsoud, H. (1985). Nature, 317, 416.
[18] Bogart, R. S., Bai, T. (1985). ApJ, 299, L51.
[19] Bai, T., and Sturrock P. A. (1987). The 152 day periodicity of the solar flare occurrence rate, Nature, 327, 601-604.
[20] Ribes, E., Merlin, Ph., Ribes, J. C., Barthalot, R. (1987), Annales Geophysicae 7, 321.
[21] Lean, J. L., Bruckner, G. E. (1989). Intermediate-term solar periodicities: 100-500 days, APJ, 337, 568.
[22] Ozguç, A., Atac, T. (1989). Solar Phys., 123, 357.
[23] Carbonell, M., Ballester, J. L. (1990). A&A, 238, 377.
[24] Droge, W., Gibbs, K., Grunsfeld, J. M., Meyer, P., Newport, B. J. (1990). ApJS, 73, 279.
[25] Pap, J., Tobiska, W. K., Bouwer, S. D. (1990). SolarPhys., 129, 165.
[26] Kile, J. N., Cliver, E. W. (1991). ApJ, 370, 442.
[27] Verma, V. K., Joshi, G. C. and Paliwal, D. C. (1992). Solar Phys., 138, 205.
[28] Cane, H. V., Richardson, I. G., von Rosenvinge, T. T. (1998). Geophys. Res. Lett., 25, 4437.
[29] Ballester, J. L., Oliver, R., Baudin, F. (1999). ApJ, 522, L153.
[30] Crowley, T. J., Berner, R. A. (2001). CO2 and climate change. Science 292, 870-872.
[31] Shaviv, N. J., Veizer, J. (2003). Celestial driver of Phanerozoic climate? GSA Today 13: 4-10.
[32] Royar, D. L. (2006). CO2 forced climate threshold during the Phanerozoic. Geochim Cosmochim Acta 70:5665-5675.
[33] Li, Q. X. (2008). Periodicity and hemispheric phase relationship in high-latitude solar activity. Sol. Phys. 249, 135.
[34] Grinsted, A., Moore J. C., Jevrejeva. S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geophys., 11, 561-566.
[35] Davis, J. C. (2002). Statistics and data analysis I geology, 3rd edn. Willey, NewYork, p 637.
[36] Morlet, J., Arens, G., Fourgean, E. and Giard, D. (1982). Wavepropagation and sampling theory, part1; comples signal land scattering in multi layer media. Journal of Geophys. 47:203-221.
[37] Zhang, Xue Feng, GuiMing, Le. And Zhang, Yan. Xia. (2012). Chinese Science Bulletin, Vol. 57, No. 2078-2082.
[38] Le, G. M. (2004). Wavelet analysis of the schwabe cycle properties in solar activity. Chin J Astron Astrophys, 4:578–582.
[39] Torrence, C. and Webster, P. (1999). International changes in the ENSO-Monsoon System, J. Clim., 12, 2679-2690.
[40] Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61-78.
[41] Knaack, R., Stenflo, J. O., S. V., Berdyugina: 2005, Astron. Astrophys. 438, 1067.
[42] Li, K. J., Gao, P. X., & Su, T. W. (2005). Sol. Phys., 229, 181.
[43] Farge, M. (1992). Ann. Rev. Fluid Mech. 24, 395.
[44] Foufoula-Georgiou, E. and Kumar. P., (1995). Wavelet in Geophysics, Academic Press, 373.
[45] Zolotova, N. V., & Ponyavin, D. I.(2006), A & A, 449, L1.
[46] Maraun, D., Kurths, J. (2004). Nonlinearproc. Geophys., 11, 505.
[47] Christopher, T., Gilbert, P. C. (1998). A practical guide to wavelet analysis. Bullamer Meteorlog Soc, 79, 61-68.
[48] Ozguç, A., Ataç, T. and Rybák, J. (2002) J. Geophys. Res. 107, 10. 1029/2001JA009080.
[49] Katsavrias, Ch., Preka-Papadema, P., Moussas, X. (2012). astro-ph. SR, arXiv:1205.2229v1.
[50] Sturock, P. A., Bai, T. (1992). Apj, 397, 337.
[51] Tong, Xu., Jian, Wu., Zhen-Sen, Wu., and Qiang, Li. (2007). Chin. J. Astron. Astrophys. Vol. 8, No. 3, 337–342.
[52] Duhau, S. (2003). Wavelet analysis of solar activity recorded by sunspot groups. Solar Phys. 213:203-212.
[53] Wang, J. L., Gong, J. C., Liu, S. Q., et al. (2002). The prediction of maximum amplitudes of solar cycles and the maximum amplitude of solar cycle 24. Chin. J. Astron. And Astrophys, 2 (6): 557-562.
[54] Chowdhury Parth. (2010). Short Term Periodicities in Sunspot Activities During the Descending Phase of Solar Cycle 23. Solar Phys 261:173–191. DOI10.1007/s11207-009-9478-7.
[55] Lean, J. L. (1991). Rev. Geophys., 29, 4, 505.
[56] Balthasar, H. (2007). A & A, 471, 281.
[57] Kilick, H. (2009). Sol. Phys., 253, 281.
[58] Singh, Jand Prabhu T. P. (1985). Sol. Phys., 97, 203.
[59] Kane, R. P., Vats, H. O. and Sawant, H. S. (2001). Sol. Phys., 2011, 181.
[60] Kane, R. P. (2002). Sol. Phys. 205, 351.
[61] Hiremath, K. M. (2002). In Proc. IAU Coll 188, (ESASP.505). P. 425.
[62] Lara, A, Borgazci, A, Mendas, Odim, Jr., Rosa, R. R., Dominguer, M. O. (2008). Solar Phys, 248, 155.
[63] Yin, Z. Q., Han, Y. B., Ma, L. H., Le, G. M., Han, Y. G. (2007). Chin. J. Astron. Astrophys. 7, 823.
Cite This Article
  • APA Style

    Satish Kumar Kasde, Deepak Kumar Sondhiya, Ashok Kumar Gwal. (2016). Analysis of Sunspot Time Series During the Ascending Phase of Solar Cycle 24 Using the Wavelet Transform. American Journal of Modern Physics, 5(5), 79-86. https://doi.org/10.11648/j.ajmp.20160505.11

    Copy | Download

    ACS Style

    Satish Kumar Kasde; Deepak Kumar Sondhiya; Ashok Kumar Gwal. Analysis of Sunspot Time Series During the Ascending Phase of Solar Cycle 24 Using the Wavelet Transform. Am. J. Mod. Phys. 2016, 5(5), 79-86. doi: 10.11648/j.ajmp.20160505.11

    Copy | Download

    AMA Style

    Satish Kumar Kasde, Deepak Kumar Sondhiya, Ashok Kumar Gwal. Analysis of Sunspot Time Series During the Ascending Phase of Solar Cycle 24 Using the Wavelet Transform. Am J Mod Phys. 2016;5(5):79-86. doi: 10.11648/j.ajmp.20160505.11

    Copy | Download

  • @article{10.11648/j.ajmp.20160505.11,
      author = {Satish Kumar Kasde and Deepak Kumar Sondhiya and Ashok Kumar Gwal},
      title = {Analysis of Sunspot Time Series During the Ascending Phase of Solar Cycle 24 Using the Wavelet Transform},
      journal = {American Journal of Modern Physics},
      volume = {5},
      number = {5},
      pages = {79-86},
      doi = {10.11648/j.ajmp.20160505.11},
      url = {https://doi.org/10.11648/j.ajmp.20160505.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20160505.11},
      abstract = {The sunspots are widely used to measure the rotational rate of solar surface. We are interested in analysis of the temporal evaluation of the short-term period present in sunspot time series (i.e. sunspot number and area) during the ascending phase of Solar Cycle 24. For the better understanding of variation in solar activity originated at different layers of the solar atmosphere with respect to sunspot cycles, we study the phase relation between sunspot numbers and sunspot areas using cross correlation analysis techniques based on extended wavelet based approaches such as continuous wavelet transform, cross-wavelet transform, and wavelet coherence. In this study we found the short-term periodicity “27 days-rotational rate of Sun” for current solar cycle 24 (January2008-May2013), which suggested that the Solar Cycle24 has minimum solar activity. We have also investigated the correlation between both parameters and identify the unusual conditions in space weather.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Analysis of Sunspot Time Series During the Ascending Phase of Solar Cycle 24 Using the Wavelet Transform
    AU  - Satish Kumar Kasde
    AU  - Deepak Kumar Sondhiya
    AU  - Ashok Kumar Gwal
    Y1  - 2016/08/17
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajmp.20160505.11
    DO  - 10.11648/j.ajmp.20160505.11
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 79
    EP  - 86
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20160505.11
    AB  - The sunspots are widely used to measure the rotational rate of solar surface. We are interested in analysis of the temporal evaluation of the short-term period present in sunspot time series (i.e. sunspot number and area) during the ascending phase of Solar Cycle 24. For the better understanding of variation in solar activity originated at different layers of the solar atmosphere with respect to sunspot cycles, we study the phase relation between sunspot numbers and sunspot areas using cross correlation analysis techniques based on extended wavelet based approaches such as continuous wavelet transform, cross-wavelet transform, and wavelet coherence. In this study we found the short-term periodicity “27 days-rotational rate of Sun” for current solar cycle 24 (January2008-May2013), which suggested that the Solar Cycle24 has minimum solar activity. We have also investigated the correlation between both parameters and identify the unusual conditions in space weather.
    VL  - 5
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Space Science Research Laboratory, Department of Physics and Electronics, Barkatullah University, Bhopal, India

  • Department of Physics, LNCT Group of Colleges, Bhopal, India

  • Space Science Research Laboratory, Department of Physics and Electronics, Barkatullah University, Bhopal, India

  • Sections