Lttice-spin phonons are considered, which make the heat capacity at the critical temperature satisfy experimental observations better. There is a BEC phase transition in an Ising model attributable to the lattice-spin phonons. We proved that the spin-wave theory only is available after BEC transition, and the magnons have the same characteristics as the lattice-spin phonons’, resulting from quantum effect. Energy-level overlap effect at ultra-low temperature is found. A prediction of BEC phase transition in a crystal is put forward as our theory generalization.
Published in | American Journal of Modern Physics (Volume 3, Issue 4) |
DOI | 10.11648/j.ajmp.20140304.15 |
Page(s) | 178-183 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Ising Model, Magnetization, Heat Capacity, BEC, Spin-Wave Theory
[1] | You-gang Feng 2011 arxiv:1111.2233 |
[2] | K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J .van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, 1995 Phys. Rev. Lett. 75 3469 |
[3] | M. H. Anderson, J. R. Ensher, M. R. Matthew, C. E. Wieman, and E. A. Cornell, 1995 Science 269 198 |
[4] | N. R. Newbury, C. J. Myatt, and C. E. Wieman 1995 Phys. Rev. A 51 R2680 |
[5] | Wolfgang Petrich, Michael H. Anderso, Jason R. Ensher, And Eric A. Cornell 1995 Phys. Rev. Lett. 74 3352 |
[6] | M. Erhard, H. Schmaljohann, J. Kronjäger, K. Bongs, and K. Sengstock 2004 Phys. Rev. A 70 031602 |
[7] | Axel Griesmaier, Jorg Werner, Sven Hensler, Jurgen Stuhler, and Tilman Pfau 2005 Phys. Rev. Lett. 94 160401 |
[8] | D. Reyes, A. Paduan-Filho, and M. A. Continentino 2008 Phys. Rev. B 77 052405 |
[9] | T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka 2000 Phys. Rev. Lett. 84 5868 |
[10] | M. Jaime, V. F. Correa, N. Harrison, C. D. Batista, N. Kawashima, Y. Kazuma, G. A. Jorge, R. Stern, I. Heinmaa, S. A. Zvyagin, Y. Sasago, and K. Uchinokura 2004 Phys. Rev. Lett. 93 087203 |
[11] | J. Sirker, A. Weisse and O. P. Sushkov 2004 Europhys. Lett. 68 275 |
[12] | A. V. Syromyatnikov 2007 Phys. Rev. B 75 134421 |
[13] | Dagim Tilahun, R. A. Duine, and A. H. MacDonald 2011 Phys. Rev. A 84 033622 |
[14] | K. Mikelsons and J. K. Freericks 2011 Phys. Rev A 83 043609 |
[15] | You-Gang Feng published in this Journal with this paper |
[16] | R. Kubo 1996 Rep. Prog. Phys. 29 255-284 |
[17] | Charles Kittel 1996 Introduction to solid state physics 7th. Edit. (New York, John Wiley) p124 |
[18] | R.K.Pathria 2001 Statistical mechanics 2nd. Edit. (Singapore, Elsevier) p157-168 |
[19] | T. Holstein, H. Primakoff 1940 Phys. Rev. 58 1098 |
[20] | Freeman J. Dyson 1956 Phys. Rev. 102 1217 |
[21] | Conyers Herring and Charles Kittel 1951 Phys. Rev. 81 869 |
[22] | Takeo MATSUBARA and Hirotsugu MATSUDA 1956 Prog. Theor. Phys. 16(6) 569 |
[23] | F. Bloch 1930 Zeit. Physik 61 206; 1932 Zeit. Physik 74 295 |
[24] | M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, 2003 Phys. Rev. Lett. 19 250401-1 |
[25] | J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Szymańska, R. Andrė, J. L. Stachli, V. Savona, P. B. Littlewood, B. Deveaud and Le Si Dang 2006 Nature 443 409 |
[26] | M O Hase and J F F Mendes 2008 J. Phys. A.Math. Theor. 41 145002 |
[27] | Yuki Kawaguchi and Masahito Ueda 2012 Physical Reports 520 253 |
[28] | M. Blackman 1935 Proc. Roy. Soc. A148 365; A149 117 |
[29] | E. W. Kellermann 1941 Proc. Roy. Soc. A178 17 |
[30] | Huber, Greg 1982 Am. Math. Monthly 89(5) 301. |
APA Style
You-Gang Feng. (2014). Secondary Phase Transition of Ising Model. American Journal of Modern Physics, 3(4), 178-183. https://doi.org/10.11648/j.ajmp.20140304.15
ACS Style
You-Gang Feng. Secondary Phase Transition of Ising Model. Am. J. Mod. Phys. 2014, 3(4), 178-183. doi: 10.11648/j.ajmp.20140304.15
AMA Style
You-Gang Feng. Secondary Phase Transition of Ising Model. Am J Mod Phys. 2014;3(4):178-183. doi: 10.11648/j.ajmp.20140304.15
@article{10.11648/j.ajmp.20140304.15, author = {You-Gang Feng}, title = {Secondary Phase Transition of Ising Model}, journal = {American Journal of Modern Physics}, volume = {3}, number = {4}, pages = {178-183}, doi = {10.11648/j.ajmp.20140304.15}, url = {https://doi.org/10.11648/j.ajmp.20140304.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20140304.15}, abstract = {Lttice-spin phonons are considered, which make the heat capacity at the critical temperature satisfy experimental observations better. There is a BEC phase transition in an Ising model attributable to the lattice-spin phonons. We proved that the spin-wave theory only is available after BEC transition, and the magnons have the same characteristics as the lattice-spin phonons’, resulting from quantum effect. Energy-level overlap effect at ultra-low temperature is found. A prediction of BEC phase transition in a crystal is put forward as our theory generalization.}, year = {2014} }
TY - JOUR T1 - Secondary Phase Transition of Ising Model AU - You-Gang Feng Y1 - 2014/08/10 PY - 2014 N1 - https://doi.org/10.11648/j.ajmp.20140304.15 DO - 10.11648/j.ajmp.20140304.15 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 178 EP - 183 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20140304.15 AB - Lttice-spin phonons are considered, which make the heat capacity at the critical temperature satisfy experimental observations better. There is a BEC phase transition in an Ising model attributable to the lattice-spin phonons. We proved that the spin-wave theory only is available after BEC transition, and the magnons have the same characteristics as the lattice-spin phonons’, resulting from quantum effect. Energy-level overlap effect at ultra-low temperature is found. A prediction of BEC phase transition in a crystal is put forward as our theory generalization. VL - 3 IS - 4 ER -